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Outline

• Identify opportunities for model and observation 
teams to work together to:

• harness sources of precipitation predictability over 
the ocean

• reduce precipitation bias: over the ocean, through 
teleconnections, in moisture transport to CONUS

• … in the arena of ocean-atmosphere exchanges… 
away from home and close to home

• SST
• air-sea fluxes
• marine atmospheric boundary
• convection – surrounding environment
• convective organization and upscale growth
• teleconnections
• on-shore flow

Goal: Promote Discussion
• What is holding us back? 
• What are the key science questions?
• How can teams work together to 

solve the problem in new ways?
• What’s going on, and what are 

experts doing about it right now?

c/o Charlotte DeMott



Ocean-atmospheric exchanges influence 
CONUS precipitation by altering:

1. moisture transport; moisture 
sources and sinks

Hendersen et al. 2017 - MJO Phase 3, GPCP precip
and 250 mb height anomalies ERA-I

Total Precipitable Water, TPW

2. general circulation:
a) tropical convection
b) teleconnection to CONUS

2 ways 
predictions 
can fail



Major opportunities for ocean influence on CONUS precip

Tropical oceans: far Western 
Pacific and Maritime Continent [Emerging] Arctic On-shore coastal flow

It is beneficial to target new innovations and investments in modeling and 
observations in these regions… such as these current/new field campaigns:

warm season US precip is analogous to 
Maritime Continent convection; lessons 
learned here will be holistically relevant

YMC, MINTIE, TPOS/OASIS, PISTON NASA Salinity, MOSAIC, long term obs TRACER, ATOMIC, CLEAR

2 leading modes for sensitivity 
of CONUS precip/drought to SST
Sardeshmukh, Barsugli, Shin, 2021
Shin et al. 2006



The tropical mean state (ENSO) is not well predicted

Unsurprisingly, bias also exists in fluxes and lower 
trop. moisture (Kim 2017; Toh et al. 2017) 

Science Q: Why are the models doing this? How do 
precipitation and teleconnections respond?

Opportunity: Empirical models like LIM, model-
analogs, and similar post-processing techniques can 
help overcome these errors and improve model skill

CMIP6 SST bias
result: 
30-60 W 
m-2 net 
flux error

Leading EOF of monthly SST 
Newman and Sardeshmukh 2017

Obs

LIM month 6

NMME month 6

c/o M. 
Alexander



Closer to home… ENSO and NAO mean state affect 
land-falling hurricanes, atmospheric rivers, drought, 
Caribbean SST+winds, tornadoes, drought

Shuyi S Chen, Edoardo Mazza, University of Washington 

Tropical Cyclone Rainfall …. EOFs integrated vapor transport and its divergence
(Xiong and Ren 2021)

CONUS precipitation prediction requires accurate
multi-scale, multi-location air-sea interaction
to be captured in fully-coupled global models



Capotondi et al., 2020

The flavors of the tropical mean state (ENSO) 
are not well predicted

Science Q: Why are E- and C- type 
events preferred in some cases? 
How do they transition between 
types? What are the precursors? 
How does US precipitation respond? 

Opportunity: Fully coupled models 
and more data are needed to 
conduct sensitivity experiments

East Pacific ~ strong El Niño Central Pacific ~ weak El Niño



MJO convective envelope tracking
Kerns and Chen 2016

Boreal Summer MJO, Ma et al. 2021

Science Q: Are the propagation 

mechanisms the same for different 

clusters? How do they teleconnect?

Opportunity: Compare model and 

obs with this time-evolving tracking 

framework... for MJO, AR, ENSO, etc.

Boreal Winter MJO
Kerns and Chen 2016

The flavors of the tropical variability (MJO) 
are not well predicted



Synoptic scale weather events over ocean 
can also teleconnect and affect US precip

“extreme weather events in different parts of the world may be 
linked.” - Bosart et al. 2017, and many more

8-9 Sept 2020: record smoke in CA 
and early snow in CO

High amplitude 250 mb jet stream 
and 500 mb trough downstream 
from Philippines typhoon…

2-day tropical heating pulses cause 
teleconnections to CONUS 

Branstator 2014: Day 9 300 mb wind response



SST predictions are limited by limitations in 
modeling the ocean mixed layer

Opportunities:
• model resolution is improving, coupled DA advancements and 

experiments are ongoing
• DNS and field campaign data are revealing the turbulent 

processes in ocean needed to simulate SST, ocean heat content
• turbulence measurements have been added to surface and 

subsurface platforms: drifters, gliders, floats, and moorings 
• new tropical ocean observing system will have better/more 

surface fluxes, higher ocean vertical resolution, and more sites
• field campaigns bring more dense observations

• UsX uncrewed ocean platforms provide more data in harsh 
places (Arctic, waves, long-deployments)

• physical comparison and treatment of fluxes (COARE)
Challenges:
• horizontal resolution + bottom topography -> upwelling, mixing, 

mesoscale and submesoscale SST fronts, eddies, and filaments
• turbulence -> mixing, tides, waves (surface and interior)
• vertical resolution -> near-surface stable layers, barrier layers, 

upper ocean currents, ocean heat content, mixed layer depth
• coupled DA -> surface fluxes, waves, cloud shading

Sprintall and Cronin, 2001



Ocean models and reanalysis lack realistic 
mixing/turbulence => major limitation for modeling SST

HIWINGS 2013

Moum 2021: Variations in ocean mixing from seconds to years

Langmuir 
Circulations

surface rows 

Waves, Sea Spray, High Winds, High Shear, Entrainment

DYNAMO MJO Westerly Wind Burst: 
25% more SST cooling caused by ocean 
shear and entrainment across base of 
ocean mixed layer than by surface 
fluxes (Moum et al. 2014, 2016)

Opportunity: 
• UsX: turbulence measurements can 

be made on drifters, profiling floats, 
moorings, towed ship profilers

Science Q: What are the fluxes and SST 
during high winds, sea spray, big 
waves? (CBLAST: Chen et al., Black et 
al. Edson et al. 2007)

2003 → 2007



Atmosphere Model

Ocean Model

Surface boundary conditions

Ocean surface layer

Atmosphere surface layer

Air-Sea Interface Module

Unified Wave INterface (UWIN) 
for Coupled Models (CM)

Chen et al. (2013), Chen & Curcic (2016) 

need coupled observations 

and coupled data assimilation

Coupled atmosphere-wave-ocean models are successful in research 
models, and are needed operationally

Ocean surface layer

Interface (waves)

Atmosphere surface layer

Shuyi Chen, Univ of Washington

Model can use a consistent single set of coupled equations across 
the air-sea interface instead of separate drag coefficients



Increasing ocean horizontal resolution improves 
model skill in SST and precipitation

SST gradients (Laplacians) enhance air-sea fluxes and precip, forced by ocean submesoscale and mesoscale fronts, eddies, filaments
Lindzen and Nigam 1987, Soloviev and Lukas 1997, Woolnough et al. 2000, 2001, Costa et al. 2001, Chelton et al., 2004; Small et al., 
2008, Back and Bretherton et al. 2009a,b, Li and Carbone 2012, Carbone and Li 2015, de Szoeke and Maloney 2020, Sullivan et al. 2020

Ocean reanalysis is becoming finer (MERCATOR)

modeled diabatic heating: ∆X = 162 km

Laplacian of SST excites rainfall… sensitive to 
SST product chosen, Li and Carbone 2012

°C/100 km
modeled atm. diabatic heating: ∆X = 27 km

Ocean mesoscale eddies in warm western boundary currents have 
both local and remote influences on the atmospheric storm track:

Ma et al. 2017, 
Saravanan and 
Chang 2019



In-situ observations of SST or ocean mixed layer depth to 
validate or initialize models are sparse

5 days of ocean observation platforms
Drifting floats, Moorings, Ship (CTD), Ship expendable (XBT)

Ocean observation 
platforms
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Argo floats and surface drifters cannot sample within Maritime Continent due to Exclusive Economic Zone (EEZ) restrictions.

From 2004-2018 (14 years), 0-400 Argo samples have 
been collected per 3°x3° box across Oceania

In 2013, a highly sampled year, Argo sampled only 0-40 
times per year per 3°x3° box

Argo floats profile T from 2 – 1000 m, every 9 days, approximately 1 per 1 month per 3° X 3 ° box

c/o Kyla Drushka, APL-UW

Within the Maritime Continent: no direct in-situ data of SST, ocean mixed 
layer depth, or air-sea fluxes are available to initialize or validate models

Challenge: Even outside EEZ, Argo floats …
… cannot sample seasonal or subseasonal scales (≤ 30 samples/yr)
… cannot sample regional variability across basin
… cannot sample above 2 m depth, or above 5 m before 2018

Opportunity: attempt to obtain research permits 
for field campaigns. International capacity 
building is critical to partnerships; TPOS/OASIS 
new flux and ocean sites

40 400

0 0



We must better understand, measure, and model 3-D subsurface 
ocean mixing, currents, tides, stability to better predict SST, ocean 
heat content, and precipitation

16

Brown et al. 2015

Sprintall et al. 2014

Pacific mean state: complex bottom topography, strong 
seasonally reversing current systems, air-sea-land interaction, 
barrier layers, and strong mixing by tides and internal waves.

Modeled anomalies caused 
by neglecting tidal mixing



Cronin and McPhaden 2002

Girishkumar et al. 2011

Barrier Layer Formation

We must better understand, measure, and model 3-D subsurface 
ocean mixing, currents, tides, stability to better predict SST, ocean 
heat content, and precipitation



1-3 hourly (subdiurnal) SST and flux coupling 
improves forecasts of ENSO, monsoons, and MJO

Masson et al. 2012, Terray et al. 2012, Seo et al. 2014

Two MJOs during DYNAMO: 
diurnal cycle of SST > 
intraseasonal cycle of SST

Ruppert and Johnson 2015

suppressed MJO       → active MJO

SST
daily SST
wind

0 m 
2 m 
4 m 
6 m 

ocean diurnal 
warm layers

Wyrtki Jet; 
ocean shear 

mixing

Surface stable layers amplify SST and air-sea flux variability on sub-diurnal time 
scales – diurnal warm layers, maybe also rain/fresh water layers
Opportunity: predictable except if strong advection or preexisting stable layers 
are present (Fairall et al. 1996, Gentemann et al. 2008, Thompson et al. 2019)

Ocean diurnal 
warm layers



Evaporation describes how the ocean and marine 
boundary layer interact; measuring E is not trivial

Focusing on integrated 
moisture-related quantities 
can be useful for model 
diagnostics and empirical 
methods (LIM):
ocean salinity, P-E
trade winds in winter: ATOMIC
vertically integrated moisture
column saturation fraction
detrainment and entrainment
isotopes

Surface salinity as predictor of rain on seasonal+ scales:
Li et al. 2016a, 2016b, 2018, Hackert et al. 2020
https://www.SalientPredictions.com/
… excess S is directly related to evaporation

Salinity can also be used to track surface features long 
term (~conserved variable) Hasson et al. 2019

E is calculated by measuring 
several variables on ships, 
moorings, and autonomous ocean 
vehicles, or E is estimated using an 
algorithm like COARE with several 
satellite retrievals as input 

https://www.salientpredictions.com/


Bony et al. 2017, Raymond 1995, Lilly 1968, Maloney 2009, Wolding and Maloney 2015b

• Mass flux at top of atmospheric boundary layer is proportional to surface buoyancy flux (latent + sensible)
• Surface fluxes are critical terms in column-integrated moisture and moist static energy budgets 

Mixed Layer

Shallow boundary layer clouds are the ones 
that respond directly to SST 
… via surface latent, sensible, buoyancy, momentum fluxes

θV Stable trade wind inversion

stable entrainment zone

B = surface buoyancy flux = constant x Qlatent+ Qsensible

some boundary layer clouds 
grow upscale into deep 
convection; building blocks



Shallow boundary layer clouds move moisture, momentum, 
and heat between ocean and free troposphere

Not well-resolved from satellite; blocked in visible by upper level clouds; microwave 
and IR based satellite global precip products lacks precipitation features with 
diameter < 30 km or rain rate < several mm/hr

If we start paying attention when deep convection begins, the ocean-atmosphere 
part of the story is missed; we must observe, understand, parameterize, model the boundary layer

We do not observe SST and fluxes on the same time or space scales of convection



The ocean’s impact on the deep 
atmospheric convection starts with non-
precipitating boundary layer convection 

Rowe and Houze 2015
Ruppert and Johnson 2015, 2016

Small non-precipitating 
clouds are the ocean-
forced precursors, or 
building blocks, to deeper 
clouds

Precipitation systems large
(> 30 km), intense (several 
mm/hr), and persistent
enough (~30-60 min) are 
measured consistently 
from space

Non-precipitating 
clouds interact and 
grow upscale 
through colliding 
atm. cold pools
Feng et al. 2015



More work needs 
to be done on 
marine 
atmospheric 
chemistry in 
collaboration 
with cloud and 
boundary layer 
studies

Benedetti et al. 2018 
review paper: advances 
in aerosol predictions 
and data requirements 

Open ocean conditions underneath African dust 
plumes. Caribbean. ATOMIC 2020. Quinn et al. 2020

NOAA PMEL 
atmospheric 
chemistry and 
composition



Reanalysis and satellite-based 
gridded products disagree:

• fluxes

• low-level convergence response to SST 

• tropospheric vertical profiles of T and humidity

variations in modeled low-level 

convergence for a given SST pattern, 

Back and Bretherton 2009, recently 

adapted by de Szoeke and Maloney 2020

Opportunity: Repeat model and reanalysis diagnostic exercises 
for different flavors of ENSO, MJO, BSISO, convective lifecycles

Std. Dev. Between 12 QNET products ~ 30 W m-2 Yu 2019

Need: Keep investing in high-resolution 
scatterometer, SST, and near-surface 
retrievals, ideally collocated



Considerable disagreement amongst 
reanalyses, and between reanalyses 

and NOAA IGRA soundings, 
about how the vertical structure of 

moisture and temperature evolve in 
relation to convection

Fundamentally shapes how we 
understand relationship between 

convection and its thermodynamic 
environment

Additional efforts needed to observe 
and constrain vertical 

thermodynamic structure of tropics, 
particularly the boundary layer

c/o Brandon Wolding
Wolding et al. 2020a, 2020b

Specific Humidity Temperature

IGRA

ERA5

ERA5 – IGRA
includes reference

state bias

convective
lifecycle

convective
lifecycle

ERA5 specific humidity bias ERA5 temperature bias

Reanalysis and satellite-based 
gridded products disagree:

• fluxes

• low-level convergence response to SST 

• tropospheric vertical profiles of T and humidity

Opportunity: Repeat model and reanalysis diagnostic exercises 
for different flavors of ENSO, MJO, BSISO, convective lifecycles



Room for improvements… to harness precipitation 
predictability from the ocean and air-sea fluxes

• Improved coupled models -> used for SST sensitivity studies; 
must deal with extratropical noise; UFS medium and climate 
scale will share same coupled model physics in 2-5 yr; must 
get fluxes and mean modeled ENSO state correct

• Improved parameterizations -> coupled, interactive, stochastic, 
with realistic amount of noise, Sardeshmukh et al. 2021

• Improved observations -> distributed sampling, for budgets, 
super-sites with ocean+atmosphere profiles, satellite surface 
retrievals for flux calculations and vertical profiles, in-situ 
measurements to validate and improve satellite products and 
improve physical understanding used to advance models

• measuring, modeling, evaluating each physical process: ocean 
physics, SST, fluxes, boundary layer, shallow clouds, deep 
precipitation, teleconnections, ocean-moisture feedbacks

• how well does coupled DA perform in each step? 
• how well are processes predicted with increasing lead time?
• … in particular regimes in addition to mean total (convective lifecycle, 

enso diversity, mjo propagation clusters)

• building databases -> more examples with which to form 
empirical forecasts/analogs/LIMs

• Better documentation, sharing, interaction between model 
and observation teams

The robots are coming
Stevens et al 2020 
EUREC4A 
(includes ATOMIC)



Sustained teamwork and 
creativity is needed for future 
progress: 

1. observations + 
modeling

2. atmospheric science 
+ oceanography

3. interagency
4. international

24-26 MAY 
2021

c/o Charlotte DeMott
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